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ABSTRACT 

This dissertation presents two studies of the forecast of occupancy in the United 

States’ hotel industry.  The first is a quantitative study of the forecast accuracy performance 

of moving average, simple exponential smoothing, additive, and multiplicative Holt-Winters 

method, and Box-Jenkins forecasting procedures on weekly aggregated occupied room data 

from 10 geographic markets in the United States. In addition, this researcher also examined 

the performance of combined forecasts.  The additive Holt-Winters method was found to be 

the most accurate in forecasting in seven of the 10 markets, even though it was not the most 

accurate in the training set.  In three of the markets, the seasonal autoregressive integrated 

moving average method produced the highest level of accuracy. 

The second study is a qualitative study designed to understand how the sample of 

revenue management experts uses their tacit knowledge of future demand in specific markets 

to modify statistically based forecasts of hotel occupancy.  The researcher interviewed 

revenue managers.  Four of these were working on a revenue management team, which 

supported groups of franchised hotels for a major global brand.  These managers worked 

directly with the multiple hotels they supported in their assigned geographies.  The remaining 

six revenue managers were located on the property they supported.  Two of these managers 

also supported one or more properties in their geographic area in addition to their property.  

Marriott International, Hilton Worldwide, Starwood Hotels and Resorts Worldwide, 

Intercontinental Hotels Group, and Wyndham Hotels and Resorts were in the sample.  The 

revenue managers oversaw the revenue management function in the limited and select 

service, full service, and luxury quality tiers.  
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Each of the revenue managers did use external sources of information to adjust 

forecasts based upon their local markets; however, there was little training or consistency in 

how this process occured.  This results in a sub-optimal situation in which the knowledge, 

skills, and abilities in the application of expert judgement vary widely.  There appears to be 

no consistent process, training, or knowledge transfer capabilities in place for this human 

element. 

This presents an opportunity for forecast accuracy improvement across each of the 

major brands represented in the sample.  Much of the literature has demonstrated that rule-

based forecasting results in more accurate forecasts, particularly when there is good domain 

knowledge and that knowledge has a significant impact (Armstrong, 2006).  Standardizing 

practices that result in greater accuracy and creating a more robust structure across brands 

could prove to be quite beneficial. 
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CHAPTER 1. GENERAL INTRODUCTION 

Although researchers studied the topic of forecasting methods and the use of expert 

judgement for decades, application to the hotel industry has been relatively limited.  The 

ability to accurately forecast the number of occupied rooms for any given night is an 

important component in maximizing guest service and profitability in a lodging facility.  The 

production and consumption of the service experience are simultaneous and may not be 

inventoried, and the opportunity perishes every night (Zeithaml, Parasuraman, & Berry, 

1985). 

With the advent of internet based purchasing channels and the resulting transparency 

of room rates, the discipline of revenue management has become an extremely important role 

in the hotel industry.  Before this, hotels set their rates independently and without much 

regard to what their competition was charging because it was very difficult for guests to shop 

around.  Today, both the technology and the level of expertise required to function as a 

revenue manager effectively is increasing quickly.  The major global brands continue to 

significant investments in revenue management and booking engine technology—including 

forecasting systems and the ability to continually scan the room rates the competition is 

displaying. 

Dissertation Organization 

The researcher organized the dissertation in a manner that presents each of two papers 

in a complete and cohesive manner.  Chapter 1 introduces the importance and measurement 

of market share in the hotel industry, the importance of accurate forecasts of occupancy, the 

role of the revenue manager, and of the current methods used to forecast occupancy. 
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Chapter 2 presents a review of literature in four primary areas: (a) time series 

forecasting methods in general, (b) forecasting studies in the hospitality industry and (c) 

studies of expert judgement in general and in the hospitality industry in particular 

Chapters 3 and 4 each consist of a self-contained paper prepared for publication in an 

academic journal.  As such, each includes an introduction, literature review, hypothesis, 

methodology, results, conclusion, and discussion section. 

Chapter 3 consists of a paper entitled “Effective Methods of Forecasting Occupied 

Rooms.”  Chapter 4 consists of a paper entitled “The Application of Expert Judgement to 

Statistically Based Forecasts in the U.S. Hotel Industry.”  Chapter 5 presents general 

conclusions from the two papers and identifies recommendations for future research on the 

topic of time series forecasting methods and the use of expert judgement by revenue 

managers to adjust these forecasts and improve forecast accuracy. 

Market Share 

The hotel industry is somewhat unique in that room nights are sold on a multitude of 

channels including the hotel or hotel brand website, third party intermediaries such as 

traditional and online travel agencies and through the direct solicitation of groups and large 

corporate transient and group businesses.  Today it is possible for an individual traveler to 

book a room in virtually any hotel in the United States at least 360 days before arrival and in 

some cases 550 days before arrival.  Hotels must be able to price these future dates based on 

their knowledge of the likely future demand.  As demand or the rate positioning of the 

competitor hotels in a market change, a hotel must be able to adjust their pricing quickly in 

response (Chen & Schwartz, 2008). 
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The primary driver of room rates in transparent transient channels is competitive 

positioning.  Transient guests typically view a hotel room within the same quality tier and 

general location as a commodity, and, as a result, pricing becomes a very heavily weighted 

component of the buying decision.  The rates available to transient guests for a destination 

market are easily accessible on third party travel agency sites like Expedia, Travelocity, or 

Orbitz and it is simple to compare, shop, and book a room.  Also, meta-search engines such 

as Kayak or Trivago aggregate the pricing displayed on hundreds of channels in one location 

making it even easier for travelers to shop multiple sites at a single time.  It is of critical 

importance for a hotel to maintain their transient transparent rates in close range to their 

competition always or face losing business to the competition.  Historically this has been a 

manual process, but today most major brands have the technology to scan competitive hotel 

pricing for all future dates immediately respond by changing rates.  As a result, the transient 

rates are updated continuously to the date of arrival  (Chen & Schwartz, 2008). 

Market share is one of the most critical metrics in the hotel industry.  The major 

global brands compete fiercely for market share across all quality tiers.  Owner/developers 

are likely to select a brand for a hotel based on that brand’s ability to deliver high levels of 

market share.  Market share is measured by three main indexes.  Each of these indexes is 

determined by dividing the subject hotel’s metric by the average of the competition’s metric.  

Most hotels subscribe to a third-party service to which they report their metrics and receive 

in return the indexes which represent their performance against a local competitive set, a sub-

market competitive set—an airport area of a larger metropolitan area, a market, or regional 

and national averages for hotels in the same quality tier.  Of these, the most important is 

usually the local competitive set of 5 to 7 hotels.  The confidentiality of the individual hotel 
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data is carefully secured and thus individual hotels are encouraged to participate to gain 

access to the competitive data (STR Global, 2017). 

Market share is measured for room revenue in three ways.  Average daily rate, 

occupancy percentage, and revenue per available room (RevPar).  RevPar is the product of 

multiplying the average daily rate by the occupancy percentage and represents the overall 

market share combining both underlying metrics.  Market share is normally reported to STR 

Global daily, and STR Global reports back on a daily, weekly, and monthly basis. 

Profitability 

A hotel typically has a relatively large fixed cost.  The ability to manage variable 

costs becomes a crucial determinant of overall profitability. An accurate short-term forecast 

(between 3 and 30 days) is important for hotel management to be able to properly staff and 

purchase supplies.  Overstaffing or over ordering creates excessive costs for the occupancy 

and revenue.  Understaffing or under ordering can create guest service problems and or run 

out of necessary operating supplies.  Profitability and guest service in lodging are optimized 

when these workers match resources with the number of occupied rooms (Johns & Lee-Ross, 

1996). 

In addition to managing variable costs, the ability to increase the average daily rate 

and RevPar in periods of high demand has a large impact on profitability.  As most of the 

variable costs do not change based on the room rate charged, increases in average rate flow 

through to increased profit, for example, the labor costs or the supply costs. 

Over time periods of 30 to 365 days from the date of arrival, the forecast of occupied 

rooms informs pricing decisions to maximize average rate and segment availability (Zakhary, 
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Atiya, Sishiny, & Gayar, 2009).  In forecasts beyond 365 days, forecasts of occupancy and 

average rate are used primarily to inform investment decisions (Newell & Seabrook, 2006). 

The Nature of Hotel Demand 

The demand for hotel rooms in a given market varies on a daily basis and does not 

necessarily have a strong recurring pattern.  There are many factors that influence demand 

for a given night.  Group business meets when and where the group needs to meet.  

Corporate groups may meet in an easily accessible regional destination to limit travel costs of 

the meeting participants.  State and regional associations typically meet in a geographical 

rotation, selecting a different market each year.  Conventions may also meet in different 

destinations each year. 

Transient travelers travel to destinations for a host of reasons, and may or may not 

ever return to a destination.  A market may be host to a special event, which drives demand 

on a certain date or dates.  Examples of this are sporting events, entertainment events, and 

cultural events.  This fluctuation in demand creates challenges in forecasting occupancy and 

pricing for future periods. 

Over multi-year time horizons, the underlying demand may also change based on 

changes to the market itself, including increased competition, movement of companies and 

their related travel into or out of a market, changes in airline capacity into a market, the 

expansion or closing of sporting and event venues and convention facilities, and the relative 

attractiveness of a destination to other destinations.  The general economic conditions 

overshadow these conditions.  Travel is highly discretionary and therefore subject to even 

minor changes in general economic conditions. 
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The Use of Time Series Methods in the Forecast of Hotel Occupancy 

Time series based forecasting is defined as the extrapolation of patterns from 

historical data to obtain an approximation of the future demand over a time horizon 

(Cheikhrouhou, Marmier, Ayaidi, & Weiser, 2011).  Time series forecasting assumes that the 

patterns identified in a time series repeat themselves in the future and then, when 

extrapolated, used for the development of forecasting models. 

The time series models studied in the academic literature about hospitality and 

tourism include autoregressive integrated moving average (ARIMA) model, autoregressive 

distributed lag model (ADLM), error correction model (ECM), vector autoregressive (VAR) 

model (Wong, Song, Witt, & Wu, 2007) Box-Jenkins procedure (ARIMA Models), and 

smoothing methods such as simple moving average, single exponential smoothing, and Holt-

Winters (Zheng, Bloom, Wang, & Schrier, 2012).  Many hotel revenue management systems 

rely on the approaches of exponential smoothing (Holt-Winters), moving average methods 

(simple and weighted), or linear regression to forecast demand based on historical arrivals 

(Weatherford & Kimes, 2003). 

The Use of Expert Judgement in the Forecast of Hotel Occupancy 

Statistical forecasting methods can detect systematic patterns rapidly in large sets of 

data and can filter out noise, but they can be unreliable when data are scarce or have little 

relevance for future events.  When historical time series patterns are disrupted by foreseeable 

special or non-reoccurring events as is the case in the hotel demand environment, judgmental 

modifications of statistical forecasts may improve accuracy by allowing the estimated effects 

of these events to be incorporated into the forecast. (Goodwin, 2000).  Sanders and Manrodt 
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(2006) found from a large survey of 240 U.S. corporations, 60% indicated they routinely 

adjusted the forecasts based on their judgment. 

Research Questions. 

This dissertation explores two questions.  The first is a quantitative study of the 

performance of various methods of forecasting hotel occupancy.  In comparison to studies of 

forecasting arrivals into a destination and the forecast of RevPar, researchers have not fully 

explored this area. 

The second study explores how practicing revenue managers obtain and use tacit 

contextual information about future demand in a market to adjust the time series based 

forecast baseline.  This study will be a benefit to academe by highlighting the differentiation 

of forecasting methods and as basis for father study of expert judgement and the process of 

adjusting forecasts of hotel occupancy.  The studies will also be of benefit to practitioners in 

the hotel industry who seek to improve their forecasting accuracy continually.  

Glossary of Terms 

The following terms are commonly used in the hotel industry  

Available Room Night:  One room available for sale for a single night.     

Available Rooms:  The number of physical rooms available for sale.  

Average Rate:  Room revenue divided by the number of rooms occupied for the same period. 

Franchised:  A hotel which is not owned by the brand organization.  The vast majority of 

hotels in the United States are franchised.  Franchised hotels may or may not be operated by 

the brand organization. 

Full Service:  A hotel featuring full service food and beverage and meeting facilities. 
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General Manager:  The management position with overall responsibility for a hotel 

operation.  All other managers in a hotel report up to this position, either directly or through 

department managers. 

Limited Services:  A hotel that offers limited facilities and amenities, typically without a full-

service restaurant or meeting space. 

Occupancy:  The number of rooms occupied divided by the number of rooms available for 

the same period.   

Occupied Room:  One room occupied for one night.   

Revenue Management: The forecasting, pricing, and management of the distribution 

channels rooms are sold through for a hotel.  Revenue management seeks to optimize 

revenue per available room and profitability. 

RevPar:  Room revenue per available room.  RevPar combines both the average rate and 

occupancy percentage into a single statistic. 

STR Global:  A company which provides competitive data and analytics to the hotel industry 

globally.  The vast majority of hotels in the United States participate in STR global reporting. 
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CHAPTER 2.  REVIEW OF LITERATURE 

Introduction 

Any discussion of forecasting in the hotel industry should begin with a discussion 

regarding the general business literature that addresses the accuracy of time series foreasting 

models and the application of expert judgement in adjusting these models to produce 

increased forecast accuracy.  As the two studies contained herein are single-industry focused, 

a review on the literature relative to the hospitality and tourism industries is appropriate.  

Finally and as a means for leading directly to the research questions, a discussion of the 

research into hotel revenue management professionals—though very limited—is included. 

Forecasting in Business 

Accurate forecasts are essential to successful to organizational planning (Fildes & 

Goodwin, 2007).  While statistical forecasting methods may lead to a reliable demand 

forecast in some industries by extrapolating regular patterns in a time series, demand in a 

market is subject to many non-recurring events and unpredictable changes which interrupt 

historical patterns (Cheikhrouhou, Marmier, Ayaidi, & Weiser, 2011).  This limits the 

accuracy even the best-fit time series models. 

There have been decades of academic research focused on time series analysis (Fildes 

& Makridakis, 1995), improving statistical methods of forecasting (Fildes, Goodwin, & 

Lawrence, 2006) and the use of judgmental approaches to adjust these forecasts (Lawrence, 

Goodwin, O’Connor, & Onkal, 2006).  

Also, the idea of developing a more accurate forRevenue ManagementMean Secast 

by combining the individual forecasts obtained by the use of separate methods has existed in 

the tourism industry for decades.  Bates and Granger (1969) combined two different sets of 
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airline passenger forecasts to form a new forecast.  Their work analyzed some different 

methods of combining these individual forecasts, generally seeking a method of weighting 

each forecast so that the composite forecast error resulted in the lowest mean squared error.  

Their groundbreaking findings were that composite forecasts could yield lower mean square 

error than individual forecasts. 

Research to date has not determined one best combination method (Shen, Li, & Song, 

2011); however, the M3 competition did have results indicating that the composite forecasts 

outperform, on average, the combined individual forecasts (Makridakis & Hibon, 2000).  

Shen et al. (2011) determined that the accuracy of a composite forecast is directly related to 

the performance consistency of the individual forecasts of which it is composed. No known 

study into the use of methods of combining individual forecasts into a composite forecast for 

hotel occupied rooms has been identified. 

Time Series Forecasting 

Time series based forecasting is defined as the extrapolation of patterns from 

historical data to obtain an approximation of the future demand over a time horizon 

(Cheikhrouhou et al., 2011).  Time series forecasting assumes that the patterns identified in a 

time series repeat themselves in the future and then when extrapolated may be used for the 

development of forecasting models. 

Time series models have been used in both research and practice as the inputs into the 

model are based on historical observations; data collection and model construction are 

comparatively inexpensive (Song & Li, 2008).  There are many different mathematical and 

statistical methods (Makridakis, Wheelwright, & Hyndman, 1998) used in time series 

forecasting.  Studies, including the M-Competitions, have concluded that the accuracy of 
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various methods of time series forecasting varies based on the time horizon (Makridakis et 

al., 1998; Makridakis & Hibon, 2000).  

Forecasting in Hospitality and Tourism 

The ability to accurately forecast arrivals to a tourist destination is important to 

minimize the financial and environmental costs of excess capacity or the opportunity costs of 

unfulfilled demand (Chu, 2011).  The time series models studied in the academic literature 

about hospitality and tourism include autoregressive integrated moving average (ARIMA) 

model, autoregressive distributed lag model (ADLM), error correction model (ECM), vector 

autoregressive (VAR) model (Wong, Song, Witt, & Wu, 2007), Box-Jenkins Procedure 

(ARIMA models), and smoothing methods such as simple moving average, single 

exponential smoothing, and Holt-Winters (Zheng, Bloom, Wang, & Schrier, 2012).   

To date, the literature which is specific to hospitality and tourism has focused 

primarily on tourist arrival forecasts for specific destinations using time series models, 

econometric models, and methods of forecast combination.  Time series models examine 

historical trends and seasonal patterns and predict the future based on the trends and patterns 

recognized in the model.  Various studies of arrivals into Hong Kong (Chan, Witt, Lee, & 

Song, 2010; Cho, 2003; Song, Lin, & Zhang, 2011) used different time series forecast and 

forecast combination methods and reported mixed results in improving accuracy.  

Econometric models attempt to predict the impact of outside factors such as guests’ income, 

exchange rates, and competitors’ prices on demand (Song & Li, 2008).  

As to the emergence of forecast combination methods, in their study focusing on 

forecasting tourism demand in Singapore, Oh, and Morzuch (2005) showed that the 

composite forecasts based on the simple average of four competing time-series methods 
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always outperformed the poorest individual forecasts and sometimes performed better than 

the best individual model.  Building on this study, Wong et al. (2007) analyzed the use of 

combination methods in predicting Hong Kong inbound tourists.  These forecasts derived 

from four different forecasting models: ARIMA model, ADLM, ECM, and VAR model.  The 

study concluded that composite forecasts could outperform the least accurate individual 

forecasts.  A review of recent literature suggests it remains very challenging to identify a 

“best” forecasting method (Song & Li, 2008).  

Forecasting in Hotels 

Accurate forecasting of occupancy in the hotel industry is essential.  The position of 

revenue manager or general manager is typically responsible for creating these forecasts. 

While there has been significant research into revenue management as a discipline in the 

hotel industry (Guilet & Mohammed, 2015), there has been little research published on 

forecasting occupancy in hotels specifically. 

Many hotel revenue management systems rely on the approaches of exponential 

smoothing (Holt-Winters), moving average methods (simple and weighted), or linear 

regression to forecast demand based on historical arrivals (Weatherford & Kimes, 2003). 

The basic concept of revenue management is to maximize revenues through demand-

based variable pricing (Choi & Matilla, 2004) based on a forecast of demand for each future 

date (Emeksiz, Gursoy, & Icoz, 2006).  Revenue management is most effective in 

transactions which involve variable demand and relatively fixed, highly perishable 

inventories (Cetin, Demirciftci, & Bilgihan, 2016).  The ability to accurately forecast the 

number of occupied rooms for any given night is an important component in maximizing 

guest service and profitability in a lodging facility.  The production and consumption of the 
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service experience are simultaneous and may not be inventoried, and the opportunity perishes 

every night (Zeithaml, Parasuraman, & Berry, 1985).  

Hotel management uses forecasts of occupancy to price, to schedule staff, to purchase 

supplies and to manage cash flow (Johns & Lee-Ross, 1996).  The contribution of revenue 

management techniques on profits has been acknowledged and proven beneficial in a range 

of industries (Cross, Higbie, & Cross, 2009) and specifically the hospitality industry 

(Deighton & Shoemaker, 2001). 

Over time periods of between 3 and 30 days from arrival, a forecast of occupancy is 

needed to appropriately schedule staff in both the rooms and other departments of a lodging 

facility and as a basis for the purchases of supplies.  Profitability and guest service in lodging 

are optimized when these resources are carefully matched with the number of occupied 

rooms (Johns & Lee-Ross, 1996).  Over time periods of 30 to 365 days from the date of 

arrival, the forecast of occupied rooms informs pricing decisions to maximize average rate 

and segment availability (Zakhary, Atiya, Sishiny, & Gayar, 2009).  In forecasts beyond 365 

days, forecasts of occupancy and average rate are used primarily to inform investment 

decisions (Newell & Seabrook, 2006).  

Recent research has examined several types of time series forecasts of revenue per 

available room night (RevPar) using aggregated weekly U.S. lodging industry data and 

concluded that the simpler methods might perform better (Zheng et al., 2012).   

Seven different forecasting models were examined by Weatherford and Kimes 

(2003).  The methods included simple exponential smoothing, moving sverage, liner 

regression, logarithmic linear regression, additive and multiplicative, and Holt’s double 

exponential smoothing.  These models had varying degrees of forecasting accuracy, much 
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dependent on the time horizon.  Weatherford, Lawrence, Kimes, and Scott (2001) also tested 

the accuracy of aggregated and disaggregated forecasting methods for two large Marriott 

hotels over a 2-year period and found that the disaggregated forecasts outperformed the 

various aggregated methods.  

Additional studies have included daily occupancy, ADR, and Revpar in a sample of 

hotels in Milan (Baggio & Sainaghi, 2011); a single hotel in Ankara, Turkey (Yüksel, 2007) 

and a sample of international tourist hotels in Taiwan (Chen & Yeh, 2012). The forecast 

accuracy of the approaches in these studies is mixed.  Zheng et al. (2012) found the simple 

moving average and single exponential smoothing methods outperformed ARIMA and 

artificial neural network methods on the weekly RevPar time series. 

Expert Judgement 

Statistical forecasting methods can detect systematic patterns rapidly in large sets of 

data and can filter out noise, but they can be unreliable when data are scarce or have little 

relevance for future events.  On the other hand, judgmental forecasters can anticipate the 

effects of special events, but they are subject to a range of cognitive and motivational biases 

(Lawrence et al., 2006).  When historical time series patterns are disrupted by foreseeable 

special or non-reoccurring events as is the case in the hotel demand environment, judgmental 

modifications of statistical forecasts may improve accuracy by allowing the estimated effects 

of these events to be incorporated into the forecast (Goodwin, 2000).  Sanders and Manrodt 

(2006) found from a large survey of 240 U.S. corporations, 60% indicated they routinely 

adjusted the forecasts based on their judgment. 

In their meta study, Goodwin and Wright (1993) concluded that most research 

suggests that judges in possession of continuously available contextual information that has 
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predictive validity can outperform statistical time series methods either by adjusting these 

forecasts of making forecasts independently.  A second meta study in judgmental forecasting 

concluded that there is now an acceptance of the role of judgements and a desire to learn how 

to blend judgements with statistical methods to estimate the most accurate forecasts 

(Lawrence et al., 2006). 

A third meta study covering 25 years of published research found that forecasts 

adjusted by judgmental input have been found to be more accurate than those unaided 

judgements and proposed a method of “judgmental bootstrapping” as a model of regressing 

expert forecasts against the information the expert used (Armstrong, 2006).   

Much of the research focused on rules based forecasting (RBF), which uses 

judgmental coding to select and weight extrapolation techniques (Adya, Collopy, Armstrong, 

& Kennedy, 2001).  Studies have also focused on the use of panel and Delphi approaches to 

expert judgements (Archer, 1980).  

Of course, the use of expert judgement has challenges.  Polanyi (1958) distinguished 

between explicit and tacit knowledge.  Explicit knowledge is open and codifiable.  Tacit 

knowledge refers to all intellectual capital or physical capabilities and skills than an 

individual cannot fully articulate, represent, or codify.  Tacit knowledge is thus difficult to 

measure and represent but is described as a critical asset for an individual, group, and 

organizational performance (Styhre, 2004).  The use of tacit knowledge is common in the 

forecast of occupancy. 

Erouglu and Croxton (2010) examined the impact of judgmental bias in the 

adjustment process and found that the forecasters’ personal and motivational orientations 

have a significant effect.  Sanders and Ritzman (2001) proposed that forecasters should 
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consider six principles in deciding when and how to use judgement in adjusting statistical 

forecasts: (a) adjust statistical forecasts if there is important domain knowledge, (b) adjust 

statistical forecasts in situations with a high degree of uncertainty, (c) adjust statistical 

forecasts when there are known changes in the environment, (d) structure the judgmental 

adjustment process, (e) document all judgmental adjustments made and periodically relate to 

forecasting accuracy, and (f) consider mechanically integrating judgmental and statistical 

forecasts over adjusting.   

Expert Judgement In Hotel Revenue Management Forecasts 

Forecasting systems used in hotels are not able to predict or recognize non-recurring 

events from historical data and rely on inputs based on the revenue managers’ knowledge to 

improve the accuracy of forecasts (Radjopadhye, Mounir, Wang, Baker, & Eister, 2001).  

Although there have been improvements in forecasting systems in the hotel industry, human 

judgement is still an important factor. (Chiang et al., 2007).  There has been little research 

into the perspectives of revenue management professionals (Kimes, 2011).  

Radjopadhye et al. (2001) reviewed the problems of forecasting unconstrained room 

demand and the challenges with various traditional forecasting methods and concluded that 

incorporating expert knowledge into a forecast is one of the most important objectives of 

improving forecast accuracy.  Revenue and other hotel managers have partial knowledge of 

future events, and it is typical that this knowledge is used to adjust the statistically generated 

forecast to improve forecast accuracy.  

As with the broader research into the application of expert judgement, Schwartz and 

Cohen (2008) pointed out the subjectivity of forecasting occupancy using a simulation 
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methodology in a survey of revenue management professionals and found that experience 

and gender both affect the level of forecast uncertainty.  
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CHAPTER 3. EFFECTIVE METHODS OF FORECASTING OCCUPIED ROOMS 

Introduction 

The ability to accurately forecast arrivals to a tourist destination is important to 

minimize the financial and environmental costs of excess capacity or the opportunity costs of 

unfulfilled demand (Chu, 2011).  Similarly, the ability to accurately forecast the number of 

occupied rooms for any given night is an important component in maximizing guest service 

and profitability in a lodging facility.  The production and consumption of the service 

experience are simultaneous and may not be inventoried, and the opportunity perishes every 

night (Zeithaml, Parasuraman, & Berry, 1985).  In the short term of 3 to 10 days, a forecast 

of occupied rooms is needed to schedule appropriate staff in both the rooms and other 

departments of a lodging facility and as a basis for the purchases of supplies.  Profitability 

and guest service in lodging are optimized when these resources are carefully matched with 

the number of occupied rooms (Johns & Lee-Ross, 1996).  In intermediate time horizons of 

10 to 365 days, the forecast of occupied rooms informs pricing decisions to maximize 

average rate and segment availability (Zakhary, Atiya, Sishiny, & Gayar, 2009).  In the long 

term (multiple years), forecasts of occupied rooms and average rate inform investment 

decisions (Newell & Seabrook, 2006).  A search of literature suggests that no known study 

has applied various methods of forecasting occupied rooms. 

The purpose of this study is to test the performance of moving average, simple 

exponential smoothing, additive and multiplicative Holt-Winters method, and Box-Jenkins 

forecasting procedures on weekly aggregated occupied room data from ten geographic 

markets in the United States.  Also, this study also examines the performance of combined 

forecasts.  This study found that the simple exponential smoothing method (SES) produced 
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the best degree of accuracy as measured by mean absolute percentage error and mean 

standard error in each of the 10 different geographic markets in the training sets, however. 

The results of the simple average combination method produced the most accurate combined 

forecast in most markets. 

Review of Literature 

Forecasting in the lodging industry. 

The lodging industry is one in which accurate forecasting of occupied rooms is 

essential.  Unlike industries that produce and inventory a tangible product, the lodging 

industry produces intangible experiences that are produced and consumed simultaneously.  

The need to align production resources with occupied rooms is essential to both efficient 

operation and guest satisfaction.  Radjopadhye, Mounir, Wang, Baker, and Eister (2001) 

reviewed the problems of forecasting unconstrained room demand and the challenges with 

various traditional forecasting methods.  Schwartz and Cohen (2004) pointed out the 

subjectivity of forecasting using a simulation methodology in a survey of revenue 

management professionals.  Seven different forecasting models were examined by 

Weatherford and Kimes (2003).  These models had varying degrees of forecasting accuracy. 

Weatherford, Kimes, and Scott (2001) also tested the accuracy of aggregated and 

disaggregated forecasting methods and found that the disaggregated forecasts outperformed 

the various aggregated methods. Zheng, Bloom, Wang, and Schrier (2012) found in the 

forecasting of RevPar, simple moving average and single exponential smoothing methods 

outperformed ARIMA and artificial neural networks.  A review of recent literature suggests 

it is very challenging to identify a “best” forecasting method (Song & Li, 2008). 
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Forecasting models used in the hospitality industry. 

Time series models 

Time series models examine historical trends and seasonal patterns and forecast the 

future periods based on the trends and patterns recognized in the model.  Various studies of 

arrivals into Hong Kong (Chan, Witt, Lee, & Song, 2010; Cho, 2003; Song, Lin, Witt, & 

Zhang, 2011); retail sales (Alon, Qi, & Sadowski, 2001); and a small sample of Choice and 

Marriott hotels in the United States (Weatherford & Kimes, 2003) found that exponential 

smoothing, pickup, and moving average models were the most robust; daily occupancy, 

ADR, and RevPar in a sample of hotels in Milan (Baggio & Sainaghi, 2011) confirmed the 

complex nature of the destination and its tendency towards a chaotic state.  A single hotel in 

Ankara, Turkey (Yüksel, 2007), was used for a study invoving adjustment by an analytical 

heirarcy process and concluded that the process might help improve forecast accuracy; a 

sample of international tourist hotels in Taiwan (Chen & Yeh, 2012) was considered and 

concluded that demand uncertainty affects hotel failures,  and the aggregated weekly RevPar 

of the U.S. lodging industry (Zheng et al., 2012) concluded that the simpler forecasting 

methods might be more accurate.  

Researchers have used time series models in both research and practice. As the inputs 

into the models are based on historical observations,  data collection and model construction 

are comparatively inexpensive (Song & Li, 2008).  Many hotel revenue management systems 

rely on fairly simple approaches of exponential smoothing (Holt-Winters), moving average 

methods (simple and weighted), or linear regression to forecast demand based on historical 

arrivals (Weatherford & Kimes, 2003).   
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Econometric models 

Econometric models attempt to predict the impact of outside factors such as guest 

income, exchange rates, and competitors’ prices on demand (Song & Li, 2008).  While many 

tourism studies (Hsieh & Li, 2010; Radjopadhye, Ghalia, Wang, Baker, & Eister, 2001; 

Shen, Li, & Song, 2011; Song et al., 2011; Song, Witt, & Jensen, 2003) have been focused in 

this area, no known study has been identified that examined the use of econometric modeling 

for hotel occupied room forecasts.  Forecasting systems used in hotels are not able to predict 

or recognize non-recurring events from historical data and rely on inputs based on the 

revenue managers’ knowledge to improve the accuracy of forecasts (Radjopadhye et al., 

2001).  Yüksel (2007) conducted a study which combined time series forecasts with two 

Delphi based inquiry panels.  Pan (2012) conducted a study using search engine data to 

forecast hotel room demand in Charleston, South Carolina. 

Emergence of combination forecasting methods 

The idea of developing a more accurate forecast by combining the individual 

forecasts obtained by the use of separate methods has existed in the tourism industry for 

decades.  Bates and Granger (1969) combined two different sets of airline passenger 

forecasts to form a new forecast.  Their work analyzed some different methods of combining 

these individual forecasts, generally seeking a method of weighting each forecast so that the 

composite forecast error resulted in the lowest mean squared error.  Their groundbreaking 

findings were that composite forecasts could yield lower mean square error than individual 

forecasts.  In their study focusing on forecasting tourism demand in Singapore, Oh and 

Morzuch (2005) showed that the composite forecasts based on the simple average of four 

competing time-series methods always outperformed the poorest individual forecasts and 
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sometimes performed better than the best individual model.  Building on this study, Wong, 

Song, Witt, and Wu (2007) analyzed the use of combination methods in predicting Hong 

Kong inbound tourists. These forecasts were derived from four different forecasting models: 

autoregressive integrated moving average (ARIMA) model, autoregressive distributed lag 

model (ADLM), error correction model (ECM) and vector autoregressive (VAR) model.  The 

study concluded that composite forecasts could outperform the least accurate individual 

forecasts.   

The question then arises as to what and how many single method forecasts should be 

used to make up a composite forecast.  Research to date has not determined one best 

combination method (Shen et al., 2011); however, the M3 competition did have results 

indicating that the composite forecasts outperform, on average, the combined individual 

forecasts (Makridakis & Hibon, 2000).  Shen et al. (2011) determined that the accuracy of a 

composite forecast is directly related to the performance consistency of the individual 

forecasts of which it is composed.  No known study into the use of methods of combining 

individual forecasts into a composite forecast for hotel occupied rooms has been identified.   

 Data and Methods 

Data. 

This study used 5 years of weekly occupancy data from 2007 through 2011.  The 

researcher selected convenience sample of 10 major U.S. metropolitan markets.  Each of 

these 10 markets contained weekly data for an aggregated set of five hotels.  STR Global 

(STR Global, 2013) provided the data.  To be included in the sample, each hotel must have 

had a similar number of available rooms and the same brand for the entire time period.  Also, 

each hotel must have a primarily transient individual (as opposed to group) business.  This 
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distinction is important in that the purpose of this study is to focus on the forecasting of 

transient occupied rooms.  Forecasting group occupied rooms is less difficult for a hotel, as 

this business is contracted well in advance.  

The weekly data for the period from Monday, January 1, 2007, through Sunday, 

December 26, 2010, were used as the in-sample training set for model fitting, and the weekly 

data for the period from Monday, December 27, 2010, through Sunday, December 25, 2011, 

were used as holdout data to validate the forecasts and calculate forecast accuracy. 

 

Table 1 

Descriptive Statistics (Occupied Rooms) 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

In-sample training set 

Minimum 1,672 2,531 2,696 2,688 2,433 3,919 2,280 3,068 2,569 2,019 

Maximum 6,404 7,139 7,068 7,663 4,463 6,221 5,541 5,199 6,686 6,086 

Mean 4,160 5,090 5,046 5.002 3,540 5,222 3,683 4,313 4,143 3,664 

Standard 
Deviation 

744 1,180 1,134 997 463 480 623 466 856 902 

N 208 208 208 208 208 208 208 208 208 208 

Hold out set 

Minimum 2,633 3,172 3,536 3,404 2,582 4,441 2,661 3,185 3,060 2,483 

Maximum 6,350 7,213 6,851 7,616 4,197 6,369 5,444 5,143 6,077 5,466 

Mean 4,617 5,604 5,227 5,260 3,398 5,472 3,906 4,469 4,013 3,681 

Standard 
Deviation 

660 1,136 951 944 420 393 601 543 799 825 

N 53 53 53 53 53 53 53 53 53 53 
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Forecast methods. 

This study will first examine models identified as more accurate in prior forecasting 

studies.  First, the study builds on the work of Weatherford and Kimes (2003) by testing the 

methods of moving average and single exponential smoothing. Next, building on prior 

tourism arrival studies, the study tests both the additive and multiplicative Holt-Winters 

methods.  Finally, a Box-Jenkins procedure will be tested building on the work of Zheng et 

al. (2012). 

While there are various measurements of error available and frequently used, which 

of them to use is a subjective decision.  In this study, mean absolute error (MAE) and mean 

absolute percentage error (MAPE) were used as the primary measurement of error as they 

reflect a meaningful value to practitioners in the same units as the forecast. 

Moving average (MA) method 

For the moving average method, the single parameter n that minimizes the mean 

absolute error of the in-sample training set is held constant for the forecast of the holdout set.  

The method can be demonstrated using the formula  

 

where Yt-1 = the actual value in a time series at time period t-1 and 

 

Ù Y t  is the forecast of the 

time series for time period t.  For this study, Excel was used to test n between 1 and 52.  It is 

important to note that each time series may have error minimized by a unique n.  A concern 

with the moving average method is that when forecasting, the forecast will stabilize at the 

value of the last data point in only a few periods and remain constant for the duration of the 

forecasting horizon. 
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Single exponential smoothing (SES) method 

The formula for this method is: 

 

where Yt-1) is the actual value in a time series at time period t-1; 

 

Ù Y t  is the forecast of the time 

series for time period t; a is a smoothing constant, with a weight  

( ). 

The value of a was estimated using JMP to minimize the mean absolute error of the in-

sample training set, and then this value of a was applied to the hold out sample.  Note that 

each data set may have a unique a (shown as “level smoothing weight) in the results section. 

Additive Holt-Winters method 

The additive Holt-Winters method is appropriate when a time series has a linear trend 

with an additive seasonal pattern for which the level, the growth rate, and the seasonal 

pattern may be changing (Bowerman, Bates, & Grainger, 2005).  For this method the 

smoothing constants a, b, g were determined by Excel solver to optimize the value that 

minimized the mean absolute error in the training set. The time series point forecast may be 

described by the following formula 

 

where 

 

snT +t-L  is the “most recent” estimate of the seasonal factor for the season 

corresponding to time period 

 

T +t .  (t =1,2,…).   

The estimate for level  is given by 

. 

The estimate for the growth rate 

 

bT  is given 
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. 

The estimate for the seasonal factor 

 

snT  is given by  

. 

Where a is the data-smoothing factor, b is the trend-smoothing factor, and g is the seasonal 

change-smoothing factor.  Each of these factors may take on a value between 0 and 1.  In this 

analysis, a least squared error regression is fitted to the training set.  The intercept value of 

this regression is used as the initial value of the “level,” and the slope value is used as the 

initial value of the “growth.”  Regression estimates are then calculated for each data point in 

the time series (both the in-sample training set and the forecast).  The data is then detrended 

by dividing the actual value at each time t by the regression value.  Seasonal factors are 

determined by averaging the detrended values over the in-sample period.  For this data set, 

the researcher calculated the average detrended values for the 52-week season by averaging 

the detrended values using the formula  

 

t1 + t1+52 + t1+104 + t1+156

4 . 

The smoothing formulas above are then used to calculate the level, growth, seasonal, and 

forecast values for each time period t.  Solver was used to find the values of a, d, and g which 

minimized the mean absolute error in the training set.  These values were then used in 

calculating the forecast for the hold-out sample. 

Multiplicative Holt-Winters method 

The multiplicative Holt-Winters method is appropriate when a time series has a linear 

trend with a multiplicative seasonal pattern for which the level, growth rate, and the seasonal 

pattern may be changing rather than fixed (Bowerman et al., 2005).  Similar to the additive 
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Holt-Winters method, the estimate  of the level, the estimate bT for the growth rate, an 

estimate snT for the seasonal factor of the time series in time period T are given by the 

following smoothing equations: 

 

 

 

where 

 

a , 

 

d , and 

 

g  are smoothing constants between 0 and 1, which were optimized to 

minimize squared error using Excel solver,   and 

 

bT -1 are estimates of the level and 

growth rate which are determined using a linear regression of the training set which 

minimizes root mean absolute error,  and 

 

snT -L is the estimate in time period T-L for the 

seasonal factor, which is found using the same process as in the additive method.  A point 

forecast made in time period T for 

 

yT +t is: 

, (

 

t  = 1,2,…) 

Note that this process is used for each of the 10 geographic data sets, so unique initial 

values of the level, growth, and seasonal factors and unique optimized values for 

 

a , 

 

d , and 

 

g  are used.  

Seasonal autoregressive integrated moving average (SARIMA) method 

A Box-Jenkins seasonal autoregressive integrated moving average (SARIMA) is an 

appropriate model to use for the data sets in this study.  A requirement of this approach is 

that the time series must be transformed to stationarity if it is not stationary in raw form.  

Taking first differences of the non-stationary time series value most typically accomplishes 

this. In the Box-Jenkins methodology, the sample autocorrelation (SAC) and partial 
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autocorrelation (SPAC) are examined and a model selected based on the behavior of these 

two diagnostic measures.  As a result, the selection of a model may be highly subjective.  The 

authors chose to use the JMP Time Series platform ARIMA Modeling in which JMP selected 

models using an iterative process that resulted in the minimum Akaike information criterion 

(AIC).  AIC is a measurement of the relative quality of a statistical model and includes a 

penalty based on the number of estimated parameters.  The models with the minimum AIC 

also generally had the lowest MAE for the training set.  Each of these models also met the 

stability and invertibility requirements of the Box-Jenkins methodology.  The iteratively 

selected model was then applied to the hold-out fifth year data.  

Composite forecasts. 

Two weighting methods for combining forecasts that were found to be the most 

accurate overall from the Chan (2010) study will be used in this study.  First, simple average 

(SA).  In this method, equal weights are assigned to all single forecasts. If p single 

forecasting methods are used, each method will be assigned a weight of 1/p. In this study, 

there were five separate forecasts combined, and thus each was weighted at 0.20.  Second, 

the forecasts will be combined using a fixed weighting (FW∞).  In this method, the optimal 

weights are determined using Excel Solver to minimize the mean absolute error (MAE) in the 

training set, and fixed these weights for the entire holdout sample.  Consistent with the error 

measurement throughout the study, the accuracy of these composite forecasts were measured 

based on MAE and mean absolute percentage error (MAPE).  
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Data Analysis and Results 

 

Table 2 

Results of the Moving Average Method 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

Accuracy           

Optimal 
n 

4 2 4 4 4 4 4 4 4 4 

MAE 
Training 

449 454 400 433 180 271 275 213 228 280 

MAPE 
Training 

11.0% 9.5% 8.4% 8.9% 5.2% 5.3% 7.4% 5.1% 8.2% 7.7% 

MAE 
Forecast 

2,084 2,069 1,678 1,778 657 602 1,439 912 637 1,386 

MAPE 
Forecast 

43.6% 44.2% 29.6% 31.6% 18.2% 10.6% 35.1% 19.5% 13.9% 34.6% 

 

Table 3 

Results of Single Exponential Smoothing Method 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

Level 
Smoothing 
Weight 

0.3677 0.7049 0.6743 0.6602 0.7266 0.4943 0.5938 0.6997 0.8386 0.7732 

Accuracy           

MAE 
Training 

421 433 386 419 172 269 267 202 317 269 

MAPE 
Training 

10.9% 9.0% 8.2% 8.5% 4.9% 5.2% 7.3% 4.8% 7.7% 7.3% 

MAE 
Forecast 

1,236 2,394 1,447 1,582 664 369 1,170 803 623 1,317 

MAPE 
Forecast 

25.8% 39.9% 25.4% 28.0% 18.4% 6.6% 28.2% 17.3% 13.9% 32.7% 
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Table 4 

Results of the Additive Holt-Winters Method 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

Best Model 
Information 

          

Regression           

   Intercept 4.416.69 4.835.07 -1.13223 -0.07192 -4.09365 -0.20914 -2.7062 -0.01724 -6.48724 -6.0286 

   Slope -2.45549 2.44416 -1.13223 -0.07192 -4.09365 -0.20914 -2.70628 -0.01724 -6.48724 -6.0286 

   R2 0.03942 0.01555 0.00361 0.00002 0.28295 0.00069 0.6839 0 0.20802 0.16193 

   Adjusted  
   R2 

0.03476 0.01078 -0.00123 -0.00484 0.27947 -0.00416 0.06387 0.00485 0.20417 0.15786 

Smoothing 
Coefficient 

          

   Alpha 0.21927 0.44961 0.35905 0.35563 0.19076 0.26382 0.26382 0.23901 0.41117 0.37448 

   Delta 0.06810 0.10605 0.09506 0.08093 0.07367 0.07868 0.07546 0.07637 0.08136 0.09018 

   Gamma 0.00000 0.00000 0.23081 0.14565 0.15155 0.00000 0.00000 0.00000 0.00000 0.00000 

Accuracy           

   MAE  
   Training 

492.8 563.9 497.6 553.4 397.8 423.7 450.4 389.2 531.3 458.2 

   MAPE  
   Training 

12.8% 11.9% 10.7% 11.4% 11.2% 8.3% 12.3% 9.3% 13.1% 13.0% 

   MAE  
   Forecast 

399.4 494.0 381.7 541.3 275.0 317.6 360.0 307.4 394.5 344.9 

   MAPE     
   Forefast 

9.3% 9.3% 7.5% 10.1% 8.2% 5.9% 9.4% 7.3% 10.0% 9.3% 
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Table 5 

Results of Holt-Winters Multiplicative Method 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

Best Model 
Information 

          

Regression           

   Intercept 4,886.16 4,835.07 5,163.99 5,009.6

4 

3,968.28 5,243.5

3 

3,969.59 4,315.12 4,821.19 4,293.93 

   Slope -9.9864 2.4442 -1.1322 -0.0719 -4.0937 -

0.20091 

-2.7063 -0.0172 -6.4872 -6.0286 

   R2 0.1707 0.0156 0.0036 0.0 0.2829 0.0007 0.6884 0.0 0.20800 0.16190 

   Adjusted     
   R2 

0.1626 0.0108 -0.0012 -0.0048 0.2795 -0.0042 0.0639 -0.0048 0.2042 0.1579 

Smoothing 
Coefficient 

          

   Alpha 0.1195 0.3931 0.4469 0.1916 0.631 0.0532 0.1947 0.0000 0.3615 0.5921 

   Delta 0.0000 0.0000 0.0000 0.0000 1.0000 0.3489 0.0375 0.0000 0.0000 0.0000 

   Gamma 0.3102 0.2665 0.1519 0.2983 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Accuracy           

   MAE  
   Training 

475.1 609.0 607.6 553.3 280.9 360.8 403.0 378.7 462.7 419.9 

   MAPE      
   Training 

12.7% 13.4% 1287% 11.7% 8.3% 7.1% 11.7% 11.7% 11.8% 12.2% 

   MAE     
   Forecast 

506.1 680.1 722.7 627.8 299.3 339.3 480.0 498.0 507.3 484.6 

   MAPE  
   Forefast 

12.2% 14.0% 15.3% 12.4% 9.0% 6.3% 13.4% 11.6% 12.9% 14.4% 
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Table 6 

Results of Seasonal Autoregressive Integrated Moving Average Method 

 Best SARINA Model        Akaike Information   Accuracy 

   MAE Training MAPE Training MAE Forecast MAPE Forecast 

Atlanta (0,0,0)(2,1,0) 2497.3424 555 15.09% 558 12.28% 

Boston (0,0,0)(2,1,0) 2445.9401 481 9.80% 576 10.35% 

Chicago (0,0,0)(2,1,0) 2473.4161 522 11.27% 429 8.69% 

Denver (0,0,0)(2,1,0) 2432.0963 455 9.51% 430 7.96% 

Los Angeles (0,0,0)(1,2,0) 2258.4106 271 7.96% 509 14.68% 

Miami (0,0,0)(0,1,1) 2339.2473 347 6.81% 283 5.17% 

Nashville (0,0,0)(2,1,0) 3267.9541 346 9.97% 560 13.95% 

New York (0,0,0)(2,1,0) 2269.6282 265 6.32% 344 7.47% 

Phoenix (0,0,0)(2,1,0) 2424.1000 451 11.64% 373 8.86% 

Seattle (0,0,0)(2,1,0) 2359.3837 382 11.50% 842 23.51% 
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Table 7 

Results of Composite Forecasts 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

      Simple Average 
MAE 
Training 

378 410 348 374 185 254 273 194 297 261 

MAPE 
Training 

10.26% 8.68% 7.78% 7.72% 5.47% 5.01% 7.79% 4.72% 7.64% 7.85% 

MAE 
Forecast 

802 1150 733 745 400 318 674 525 377 718 

MAPE 
Forecast 

16.76% 19.38% 13.14% 13.06% 11.12% 5.71% 16.28% 11.53% 8.63% 17.92% 

Fixed Optimized Weighting (Quadratic) 

SMA 0.1374 0.0000 0.0000 0.0000 0.0000 0.5999 0.1005 0.0000 0.0000 0.0000 

SES 0.2792 0/4920 0.6906 0.5795 0.7360 0.1058 0.5029 0.6653 0.6996 0.6729 

HWA 0.0000 0.0423 0.0186 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HWM 0.2906 0.0067 0.0000 0.0000 0.0000 0.0000 0.0617 0.0001 0.0000 0.0000 

SARINA 0.2928 0.4591 0.2908 0.4205 0.2640 0.2942 0.3349 0.2980 0.3004 0.3271 

        Accuracy 

MAE 
Training 

358 359 306 331 159 224 240 161 260 205 

MAPE 
Training 

9.87% 7.45% 6.75% 6.84% 4.71% 4.39% 6.81% 3.89% 6.62% 6.04% 

MAE 
Forecast 

795 1413 1098 1037 652 481 904 639 487 1162 

MAPE 
Forecast 

16.57% 23.77% 19.49% 18.36% 18.19% 8.55% 21.79% 13.81% 10.62% 29.69% 

 

 

Conclusions and Discussion 

The application of five different forecasting methods to these data sets produced 

results that differ slightly from earlier studies.  Table 8 below recaps the results of these 

individual methods.  SES produced the best level of accuracy for the traing set as measured 

by mean absolute error and mean absolute percentage error in each of the 10 different 

markets.  This is not surprising given the higher correlation of recent periods and the fact that 

the smoothing coefficients are selected to maximize the accuracy of the known training set.  

When this method is used to forecast the results were not accurate for these time series data.  
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The additive Holt-Winters method was found to be the most accurate in forecasting in 

seven of the 10 markets, even though it was not the most accurate in the training set.  This 

result should be further studied.  In three of the markets, the SARIMA method produced the 

highest level of accuracy. 
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Table 8 

Results of the Individual Forecasting Methods 

 Atlanta Boston Chicago Denver Los 
Angeles 

Miami Nashville New 
York 

Phoenix Seattle 

SMA Accuracy 

MAE 
Training 

449 454 400 433 180 271 275 213 338 280 

MAPE 
Training 

11.0% 9.5% 8.4% 8.9% 5.2% 5.3% 7.4% 5.1% 8.2% 7.7% 

MAE 
Forecast 

2,084 2,629 1,678 1,778 657 602 1,439 912 637 1,386 

MAPE 
Forecast 

43.6% 44.2% 29.6% 31.6% 18.2% 10.6% 35.1% 19.5% 13.9% 34.6% 

SES Accuracy 

MAE 
Training 

421 433 386 419 172 269 267 202 317 269 

MAPE 
Training 

10.9% 9.0% 8.3% 8.5% 4.9% 5.2% 7.3% 4.8% 7.7% 7.3% 

MAE 
Forecast 

1,236 2,394 1,447 1,582 664 369 1,170 803 623 1,317 

MAPE 
Forecast 

25.8% 39.9% 25.4% 28.0% 18.4% 6.6% 28.2% 17.3% 13.9% 32.7% 

 H-W Additive Accuracy 

MAE 
Training 

493 564 498 553 398 450 389 513 458 

MAPE 
Training 

12.8% 11.9% 10.7% 11.4% 11.2% 12.3% 9.3% 13.1% 13.0% 

MAE 
Forecase 

399 494 382 541 275 318 307 395 345 

MAPE 
Forecast 

9.3% 9.3% 7.5% 10.1% 8.2% 5.9% 7.3% 10.0% 9.3% 

 H-W Multiplicative Accuracy 

MAE 
Training 

475 609 608 553 281 361 403 379 463 420 

MAPE 
Training 

12.7% 13.4% 13.8% 11.7% 8.3% 7.1% 11.7% 9.2% 11.8% 12.2% 

MAE 
Forecast 

506 680 723 628 299 339 480 498 507 485 

MAPE 
Forecast 

12.2% 14.0% 15.3% 12.4% 9.0% 6.3% 13.4% 11.6% 12.9% 14.4% 

 SARIMA Accuracy 

MAE 
Training 

555 481 522 455 271 347 346 265 451 382 

MAPE 
Training 

15.09% 9.80% 11.27% 9.51% 7.96% 6.81% 9.97% 6.32% 11.64% 11.50% 

MAE 
Forecast 

558 576 429 430 507 283 560 344 373 842 

MAPE 
Forecast 

12.28% 10.35% 8.69% 7.96% 14.68% 5.17% 13.95% 7.47% 8.86% 23.51% 

 

Given that each of these markets exhibited differing demand patterns for occupied rooms 

over the time period of the study, these results are not surprising.  The results do indicate that 
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there may be no “one-size-fits-all” best forecasting method, and this should be a focus of 

further studies. 

The fixed weighting method of combining forecasts resulted in the most accurate 

composite forecasts of the training set as the weights were optimized to arrive at this result. 

However, this method resulted in the most accurate forecast in only one market. The results 

of the simple average combination method produced the most accurate composite forecast in 

the remaining markets, and in most cases by a fairly wide margin.   

This study examined the accuracy of five different time series forecasting methods 

that were the most accurate in prior academic studies of tourist arrivals and revenue per 

available room (RevPar).  Further, this study examined the results of two methods of 

combining forecasts that were also tested in earlier studies of tourist arrivals and revenue per 

available room.  None of these methods offer acceptable levels of accuracy for practitioners.  

The mean absolute error in each of the methods is so wide as to be useless.  There are many 

reasons for this, including the time horizons this study was using and the general dynamic 

nature of the demand for occupied rooms in different markets and the attributes of the 

individual time series data.  The time series sample in this study exhibited changing trends, 

levels, and rates of change over the period studied.  This presents significant challenges for 

most time series forecasting methodologies, which imply that historical patterns, once 

identified and measured, can be effectively projected into the future. 

The results of this study have produced empirical evidence of the relatively low 

accuracy of the various individual forecasting and combining methods used in prior studies 

of other tourism related time series data when applied to occupied rooms data.  This study 

was conducted to provide researchers and practitioners with initial empirical evidence of the 



www.manaraa.com

37 

results of the various forecasting methods that have resulted in the best accuracy in other 

tourism related studies.  Given the importance of accurate forecasting of occupancy to the 

lodging industry, other methods of creating more accurate forecasts need to be studied in the 

future.   
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CHAPTER 4. THE APPLICATION OF EXPERT JUDGEMENT TO STATISTICALLY 

BASED FORECASTS OF OCCUPANCY IN THE HOTEL INDUSTRY 

Introduction 

In 2016, the direct contribution of the travel and tourism industry in the United States 

was $503.7 billion dollars and directly supported more than 5.486 million jobs (World Travel 

and Tourism Council, 2017).  As a subset of the tourism industry, the lodging industry 

generated over $189 billion in 2015 revenue (Statista, 2017).  The ability to accurately 

forecast arrivals to a tourist destination is important to minimize the financial and 

environmental costs of excess capacity or the opportunity costs of unfulfilled demand (Chu, 

2011).  Similarly, the ability to accurately forecast the number of occupied rooms for any 

given night is an important component in maximizing guest service and profitability in a 

lodging facility.  The production and consumption of the service experience are simultaneous 

and may not be inventoried, and the opportunity perishes every night (Zeithaml, 

Parasuraman, & Berry, 1985).  Revenue management is most effective in transactions which 

involve variable demand and relatively fixed, highly perishable inventories (Cetin, 

Demirciftci, & Bilgihan, 2016). 

Over time periods of between 3 and 30 days from arrival, a forecast of occupancy is 

needed to appropriately schedule staff in both the rooms and other departments of a lodging 

facility and as a basis for the purchases of supplies.  Profitability and guest service in lodging 

are optimized when these resources are carefully matched with the number of occupied 

rooms (Johns & Lee-Ross, 1996). 

Over time periods of 30 to 365 days from the date of arrival, the forecast of occupied 

rooms informs pricing decisions to maximize average rate and segment availability (Zakhary, 
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Atiya, Sishiny, & Gayar, 2009).  In forecasts beyond 365 days, forecasts of occupancy and 

average rate are used primarily to inform investment decisions (Newell & Seabrook, 2006). 

While statistical forecasting methods may lead to a reliable demand forecast in some 

industries by extrapolating regular patterns in a time series, demand in a market is subject to 

many non-recurring events and unpredictable changes which interrupt historical patterns 

(Cheikhrouhou, Marmier, Ayaidi, & Weiser, 2011).  This is particularly true in the hotel 

industry where travel decisions are highly discretionary.  Revenue and other hotel managers 

have partial knowledge of future events, and it is typical that this knowledge is used to adjust 

the statistically generated forecast to improve forecast accuracy. 

To date, the literature within the hospitality domain has focused primarily on tourist 

arrival forecasts for specific destinations.  These studies have concluded that while certain 

forecasting methods may yield more accurate forecasts than the models being used by 

managers today,  there is no one “best” model.  Recent research has examined several types 

of time series forecasts of revenue per available room night (RevPar) at the market or hotel 

level and concluded that the simpler methods might perform better (Zheng, Bloom, Wang, & 

Schrier, 2012).  Although there have been improvements in forecasting systems in the hotel 

industry, human judgement is still an important factor (Chiang, Chen, and Xu, 2006).  There 

has been little research into the perspectives of revenue management professionals (Kimes, 

2011). 

The purpose of this study to understand how the sample of revenue management 

experts uses judgment to modify statistically based forecasts of hotel occupancy.  This is an 

area that offers some opportunities for impactful, practical application and future studies.  

Sanders and Manrodt (2006) found from a large survey of 240 U.S. corporations, 60% 
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indicated they routinely adjusted the forecasts based on their judgment. It is clear that 

adjustments made to forecasts by expert judgement with contextual knowledge of future 

events are a mandatory component of forecasting (Lawrence, Goodwin, O’Connor, & Onkal, 

2006). Thus, understanding the proper use of expert judgment is more than ever an important 

activity for researchers and practitioners. 

Review of Literature 

Forecasting in general. 

Accurate forecasts are essential to successful to organizational planning (Fildes & 

Goodwin, 2007). While statistical forecasting methods may lead to a reliable demand 

forecast in some industries by extrapolating regular patterns in a time series, demand in a 

market is subject to many non-recurring events and unpredictable changes which interrupt 

historical patterns (Cheikhrouhou et al., 2011).  

Academic research has focused heavily on improving statistical methods of 

forecasting (Fildes, Goodwin, & Lawrence, 2006) and the use of judgmental approaches to 

adjust these forecasts (Lawrence et al., 2006). 

Time series forecasting 

Time series based forecasting is defined as the extrapolation of patterns from 

historical data to obtain an approximation of the future demand over a time horizon 

(Cheikhrouhou et al., 2011). Time series forecasting assumes that the patterns identified in a 

time series repeat themselves in the future and then when extrapolated may be used for the 

development of forecasting models. 

Time series models have been used in both research and practice as the inputs into the 

model are based on historical observations; data collection and model construction are 
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comparatively inexpensive (Song & Li, 2008).  There are many different mathematical and 

statistical methods (Makridakis, Wheelwright, & Hyndman, 1998) used in time series 

forecasting.  Studies, including the M-Competitions, concluded that the accuracy of various 

methods of time series forecasting varies based on the time horizon being forecast. 

(Makridakis & Hibon, 2000; Makridakis et al., 1998).  

Forecasting in hospitality and tourism 

The ability to accurately forecast arrivals to a tourist destination is important to 

minimize the financial and environmental costs of excess capacity or the opportunity costs of 

unfulfilled demand (Chu, 2011).  The time series models studied in the academic literature 

about hospitality and tourism include autoregressive integrated moving average (ARIMA) 

model, autoregressive distributed lag model (ADLM), error correction model (ECM), vector 

autoregressive (VAR) model (Wong, Song, Witt, & Wu, 2007), Box-Jenkins Procedure 

(ARIMA models), and smoothing methods such as simple moving average, single 

exponential smoothing, and Holt-Winters (Zheng, Bloom, Wang, & Schrier, 2012).   

To date, the literature which is specific to hospitality and tourism has focused 

primarily on tourist arrival forecasts for specific destinations using time series models, 

econometric models, and methods of forecast combination.  Time series models examine 

historical trends and seasonal patterns and predict the future based on the trends and patterns 

recognized in the model.  Various studies of arrivals into Hong Kong (Chan, Witt, Lee, & 

Song, 2010; Cho, 2003; Song & Lin, 2011) used different time series forecast and forecast 

combination methods and reported mixed results in improving accuracy.  Econometric 

models attempt to predict the impact of outside factors such as guests’ income, exchange 

rates, and competitors’ prices on demand (Song & Li, 2007).  
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A review of recent literature suggests it is very challenging to identify a “best” 

forecasting method (Song & Li, 2008).  

Forecasting in hotels 

Accurate forecasting of occupancy in the hotel industry is essential.  The position of 

revenue manager or general manager is typically responsible for creating these forecasts.  

While there has been significant research into revenue management as a discipline in the 

hotel industry (Guilet & Mohammed, 2015), there has been little research published on 

forecasting occupancy in hotels specifically. 

Many hotel revenue management systems rely on the approaches of exponential 

smoothing (Holt-Winters), moving average methods (simple and weighted), or linear 

regression to forecast demand based on historical arrivals (Weatherford & Kimes, 2003). 

The basic concept of revenue management is to maximize revenues through demand-

based variable pricing (Choi & Matilla, 2004) based on a forecast of demand for each future 

date (Emeksiz, Gursoy, & Icoz, 2006).  Revenue management is most effective in 

transactions which involve variable demand and relatively fixed, highly perishable 

inventories (Cetin et al., 2016).  The ability to accurately forecast the number of occupied 

rooms for any given night is an important component in maximizing guest service and 

profitability in a lodging facility.  The production and consumption of the service experience 

are simultaneous and may not be inventoried, and the opportunity perishes every night 

(Zeithaml et al., 1985).  

Hotel management uses forecasts of occupancy to price, to schedule staff, to purchase 

supplies and to manage cash flow (Johns & Lee-Ross, 1996). The contribution of revenue 

management techniques on profits has been acknowledged and proven beneficial in a range 
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of industries (Cross, Higbie, & Cross, 2009) and specifically the hospitality industry 

(Deighton & Shoemaker, 2001). 

Over time periods of between 3 and 30 days from arrival, a forecast of occupancy is 

needed to appropriately schedule staff in both the rooms and other departments of a lodging 

facility and as a basis for the purchases of supplies.  Profitability and guest service in lodging 

are optimized when these resources are carefully matched with the number of occupied 

rooms (Johns & Lee-Ross, 1996).  Over time periods of 30 to 365 days from the date of 

arrival, the forecast of occupied rooms informs pricing decisions to maximize average rate 

and segment availability (Zakhary et al., 2009).  In forecasts beyond 365 days, forecasts of 

occupancy and average rate are used primarily to inform investment decisions (Newell & 

Seabrook, 2006).  

Recent research has examined several types of time series forecasts of revenue per 

available room night (RevPar) using aggregated weekly U.S. lodging industry data and 

concluded that the simpler methods might perform better (Zheng, Bloom, Wang, & Schrier, 

2012).   

Seven different forecasting models were examined by Weatherford and Kimes 

(2003).  The methods included simple exponential smoothing, moving average, liner 

regression, logarithmic linear regression, additive and multiplicative, and Holt’s double 

exponential smoothing.  These models had varying degrees of forecasting accuracy, much 

dependent on the time horizon being forecast.  Weatherford, Kimes, and Scott (2001) also 

tested the accuracy of aggregated and disaggregated forecasting methods for two large 

Marriott hotels over a 2-year period and found that the disaggregated forecasts outperformed 

the various aggregated methods.  
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Additional studies have included daily occupancy, ADR, and RevPar in a sample of 

hotels in Milan (Baggio & Sainaghi, 2011); a single hotel in Ankara, Turkey (Yüksel, 2007) 

and a sample of international tourist hotels in Taiwan (Chen & Yeh, 2012).  The forecast 

accuracy of the approaches in these studies are mixed.  Zheng et al. (2012) found the simple 

moving average and single exponential smoothing methods outperformed ARIMA and 

artificial neural network methods on the weekly RevPar time series. 

Expert judgement. 

Statistical forecasting methods can detect systematic patterns rapidly in large sets of 

data and can filter out noise, but they can be unreliable when data are scarce or have little 

relevance for future events.  On the other hand, judgmental forecasters can anticipate the 

effects of special events, but they are subject to a range of cognitive and motivational biases 

(Lawrence et al., 2006).  When historical time series patterns are disrupted by foreseeable 

special or non-reoccurring events as is the case in the hotel demand environment, judgmental 

modifications of statistical forecasts may improve accuracy by allowing the estimated effects 

of these events to be incorporated into the forecast (Goodwin, 2000). Sanders and Manrodt 

(2006) found from a large survey of 240 U.S. corporations, 60% indicated they routinely 

adjusted the forecasts based on their judgment. 

In their meta study, Goodwin and Wright (1993) concluded that most research 

suggests that judges in possession of continuously available contextual information that has 

predictive validity can outperform statistical time series methods either by adjusting these 

forecasts of making forecasts independently.  A second meta study in judgmental forecasting 

concluded that there is now an acceptance of the role of judgements and a desire to learn how 



www.manaraa.com

45 

to blend judgements with statistical methods to estimate the most accurate forecasts. 

(Lawrence et al., 2006). 

A third meta study covering 25 years of published research found that forecasts 

adjusted by judgmental input have been found to be more accurate than those unaided 

judgements and proposed a method of judgmental bootstrapping as a model of regressing 

expert forecasts against the information the expert used (Armstrong, 2006). 

Much of the research has been conducted into rules-based forecasting (RBF), which 

uses judgmental coding to select and weight extrapolation techniques (Adya, Collopy, 

Armstrong, & Kennedy, 2001).  Studies have also focused on the use of panel and Delphi 

approaches to expert judgements (Archer, 1980).  

Of course, the use of expert judgement has challenges.  Polanyi (1958) distinguished 

between explicit and tacit knowledge.  Explicit knowledge is open and codifiable.  Tacit 

knowledge refers to all intellectual capital or physical capabilities and skills than an 

individual cannot fully articulate, represent, or codify.  Tacit knowledge is thus difficult to 

measure and represent but is described as a critical asset for an individual, group, and 

organizational performance (Styhre, 2004). The use of tacit knowledge is common in the 

forecast of occupancy. 

Eroglu and Croxton (2010) examined the impact of judgmental bias in the adjustment 

process and found that the forecasters personal and motivational orientation have significant 

effect.  Sanders and Ritzman (2001) proposed that forecasters should consider six principles 

in deciding when and how to use judgement in adjusting statistical forecasts: (a) adjust 

statistical forecasts if there is important domain knowledge, (b) adjust statistical forecasts in 

situations with a high degree of uncertainty, (c) adjust statistical forecasts when there are 
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known changes in the environment, (d) structure the judgmental adjustment process, (e) 

document all judgmental adjustments made and periodically relate to forecasting accuracy, 

and (f) consider mechanically integrating judgmental and statistical forecasts over adjusting.   

Expert judgement in hotel revenue management forecasts 

Forecasting systems used in hotels are not able to predict or recognize non-recurring 

events from historical data and rely on inputs based on the revenue managers’ knowledge to 

improve the accuracy of forecasts (Radjopadhye, Mounir, Wang, Baker, & Eister, 2001).  

Although there have been improvements in forecasting systems in the hotel industry, human 

judgement is still an important factor (Chiang et al., 2006).  There has been little research 

into the perspectives of Revenue Management professionals (Kimes, 2011).  

Radjopadhye et al. (2001) reviewed the problems of forecasting unconstrained room 

demand and the challenges with various traditional forecasting methods and concluded that 

incorporating expert knowledge into a forecast is one of the most important objectives of 

improving forecast accuracy.  Revenue and other hotel managers have partial knowledge of 

future events, and it is typical that this knowledge is used to adjust the statistically generated 

forecast to improve forecast accuracy.  

As with the broader research into the application of expert judgement, Schwartz and 

Cohen (2008) pointed out the subjectivity of forecasting occupancy using a simulation 

methodology in a survey of revenue management professionals and found that experience 

and gender both affect the level of forecast uncertainty.  
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Method 

Purpose. 

The need for qualitative studies to enhance revenue management has been urged by 

Guillet and Mohammed (2015).  The revenue manager has the primary responsibility for 

forecasts of future occupancy for a hotel.  Once complete, these forecasts are provided to the 

various operating department managers of the hotel.  The forecasts of occupancy from 3 to 

30 days from arrival are used for labor scheduling and the purchase of supplies.  To the 

extent they are used, most automated forecasting systems in the hotel industry rely on 

historical data to produce a time series forecast.  The ability to modify a time series forecast 

based on historical data with tacit knowledge of future market demand is key to improving 

forecast accuracy (Goodwin, 2000).  The purpose of this qualitative study was to explore the 

sources of demand information used by revenue managers in the United States to inform their 

expert subjective judgment in adjusting the historical time series forecasts and to describe the 

methods these managers may use to modify statistical forecasts based on historical data with 

this market demand information.  This will build upon work done by Schwartz and Cohen 

(2004); Song, Gao, and Lin (2013); and Sanders and Ritzman (2001), among others.  

Sample. 

A convenience sample of hotel and corporate revenue management support sites in 

the United States was being selected, based on researcher access to the to these units and 

their availability and willingness to participate in one-on-one interviews.  Consistent with 

Fredericks (2005), a convenience sample was developed from the researcher’s contacts and 

enhanced by snowball sampling to obtain the remainder of the sampling base.  This approach 

is appropriate when the research is exploratory in nature (Zikmund, 2003), subjects are hard 
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to reach, or when there is the potential for confidential information to be discussed 

(Fredericks, 2005). 

The researcher interviewed 10 revenue managers for this study.  Four of these were 

working on a revenue management team, which supported groups of franchised hotels for a 

major global brand.  These managers worked directly with the multiple hotels they supported 

in their assigned geographies.  The remaining six revenue managers worked at the property 

they supported.  Two of these managers also supported one or more properties in their 

geographic area in addition to their property.  

Table 9: 

Descriptive statistics of the interview sample: 

Participant A B C D E F G H I 

Years in the hotel 
industry 

10 30 26 18 20 6 42 22 3 

Years in revenue 
managment 

5 22 16 13 8 4 20 15 3 

Years in present 
position 

3 14 1.5 4 1.5 2 3 .5 1.5 

 

Marriott International, Hilton Worldwide, Starwood Hotels and Resorts Worldwide, 

Intercontinental Hotels Group, and Wyndham Hotels and Resorts were represented in the 

sample.  The revenue managers interviewed oversaw the revenue management function in 

the limited and select service, full service, and luxury quality tiers.  

Interview design. 

As this study is exploratory in nature, a semi-structured interview was conducted one 

on one with the study participant sample (Zickmund, 2003). The semi-structured interview 

process allows the interviewees to express their ideas and opinions in their words.  The use of 
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a semi-structured interview will allow insight into other important concerns of these 

managers as they emerge.   

A one-on one interview of survey design, as described by Creswell (2012) and 

Esterberg (2001), was used to answer the research questions. The questions of interest for 

this study were: 

1. What sources of market demand information do the participants use to inform 

their subjective opinion and adjust an occupancy forecast based on historical 

information? There are various sources of contextual future market demand 

information available to revenue managers. These include channel velocity 

information, future group business booked, special events in the market and 

convention center future booking activity.   In all cases, this information is 

continuously available.  Most researchers suggest that expert judges in possession 

of continuously contextual information which has predictive validity can improve 

the accuracy of time series forecasts (Goodwin & Fildes, 1999). 

2. Which of these sources do the participants find most helpful in improving forecast 

accuracy, and why?  Research on the accuracy and judgement has suggested that 

expert judges are subject to cognitive biases and inconsistency (Goodwin & 

Wright, 1994).  As much of the contextual future demand information is available 

in most markets in the United States, this question is designed to test for both 

cognitive bias and inconsistency. 

3. What market demand information would the participants like to have, but do not 

have, that would be helpful in improving forecast accuracy?  The ability of 

forecasters to make effective use of contextual information is based on the 



www.manaraa.com

50 

predictive power, regularity, and frequency of information (Goodwin & Fildes, 

1999).  This question is designed to investigate whether there is a consistent 

argument for additional demand data that is not currently available. 

The researcher asked each interviewee these structured questions and then asked 

unstructured follow on questions based on participant response.  The average length of the 10 

interviews was 48 minutes.  The researcher conducted the interviews over a 4-month period, 

from December of 2015 through March of 2016. Each interview was conducted at the 

participant’s business location.  Before the start of each interview, the participant was given 

an informed consent document, which had been previously approved by the Institutional 

Research Board at Iowa State University, and given the opportunity to read and sign it. 

Each interview was digitally recorded and transcribed verbatim using the Rev Audio 

Transcription Service (Rev, 2016). Following a review of the transcription, all digital audio 

files were deleted, and all personally identifying information about the interview participant 

and the companies they worked for was removed from the transcription notes.  Also, the 

transcripts were further anonymized by redacting references to proprietary systems or 

processes which could identify the company for which the interviewee worked (Corti, Day, 

& Blackhouse, 2000). 

The transcripts were manually coded separately by the principal researcher and a 

second researcher to improve inter-coder reliability. 

Results 

Sources of information. 

Each revenue manager used different sources of future demand information to inform the 

forecasts they were charged with producing. The variability was wide. For example, 
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Participant G: “We look at segmentation data, obviously internal and external. We get some 

segmentation data from Travel Click. The information that comes from there we compare with ours. 

Some of the other things that we'll use is Smith Travel Data. Year over year forecasting, if we're 

forecasting the year, in the beginning, we'll take Smith Travel, we'll take PKF, PWC ... All of those 

metrics that they're saying are going to grow at a certain rate in the industry and then we'll appropriate 

proper numbers per metro market.”  This was a the most analytical of the approaches in the study. 

Participant J: “I would say 75% of it is just their own memory and knowledge, but some of the hotels 

do have the convention calendar, and I ask them to give me those key dates that I need to know about, 

because they have a better indication of when they can see on paper how many room nights come into 

the market, how that's actually going to impact us.” Both of these revenue managers worked in the 

same office for the same brand and were providing revenue managent support to multiple hotels.   

There were several common sources of information, including the following: a) 

convention calendars and attendee estimates from local and regional convention and visitors 

bureaus; b) professional sporting and entertainment events from local and regional sporting 

and entertainment venues; c) group booking and booking pace projections from the hotel or 

area sales staff; and d) notes from prior historical period prepared by local hotel staff.  This 

local market knowledge was used by the revenue managers to adjust the time series based 

forecasts, which were produced by the Brand (Franchisor) Revenue Management forecasting 

systems. 

Most of the revenue managers also used a group of third party reports which provide 

transient booking pace by major channel into their market and their hotel’s relative market 

share of that channel activity.  The most frequently cited report was a proprietary report 

known as Demand360 (TravelClick, 2016), to which all the brands represented in the study 

subscribed.  Booking pace variations were used to adjust forecasts of transient demand. This 
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capability has become more important in the recent year as more and more brands and 

individual hotels participate in reporting making the data increasingly representative of the 

entire reported market. 

Weatherford, Kimes, and Scott (2001) ested the accuracy of aggregated and 

disaggregated forecasting methods for two large hotels over a two year period and found that 

the disaggregated forecasts outperformed the various aggregated methods. 

Each revenue manager used the contextual demand information differently to adjust 

their forecasts of occupancy and rate. Participant C provided this response: “Every week we do 

revenue strategy calls. During those calls, we talk about what's going on in the market. For instance, 

if there is a snow storm or a hurricane, or what have you, we use that information as well.  It doesn't 

affect too many things too often, but for instance when Hurricane Sandy hit, that had a very big 

impact on all of the forecasts the following year because of the cancellations, etc, and when the 

Boston marathon bombing happened, that had an effect on the forecast the following 2 years. We 

keep track of it, again on our weekly calls, we keep track of it, just on a simple Excel spreadsheet.” 

 Interestingly, even in situations where two or more revenue managers were working 

for the same company, there was no standardized method of applying this market knowledge.  

Each manager used different methods, and there was little if any statistical or process 

consistency.  Based on the sample, the adjustments to the forecasts were largely intuitive. 

Each revenue manager felt that it was very important to forecast by segment due to 

the significant variations in historical patterns, which occurred in certain segments. Much of 

this was based on specific markets, and there was no consistent focus or weighting of 

segment importance between markets. 

Each of the major global brand companies represented in this sample were 

continually improving their statistical forecasting technology.  One of the brand companies 
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was in the process of rolling out a much more sophisticated system which incorporated 

external demand information into the forecast engine.  

Discussion 

This study revealed some important opportunities for industry consideration and 

further study.  Each of the brands represented continues to spend significant time and 

resources on improving their automated demand forecasting systems as the importance of 

demand forecasting is widely recognized.  Each of the brands also relies on the individual 

revenue and property managers to adjust these forecasts based upon their local market, 

however this little training or consistency in how this process should occur.  This results in a 

sub-optimal situation in which the knowledge, skills, and abilities in the application of expert 

judgement vary widely.  There appears to be no consistent process, training, or knowledge 

transfer capabilities in place for this human element.  Thus, the organizations are unable to 

capture the institutional knowledge of each individual and replicate it.  Each organization is 

highly reliant on the individual capabilities of each revenue manager, and these capabilities 

vary widely based on this small sample. 

This presents an opportunity for forecast accuracy improvement across each of the 

major brands represented in the sample.  Much of the literature has demonstrated that rule-

based forecasting results in more accurate forecasts, particularly when there is good domain 

knowledge and that knowledge has a significant impact (Armstrong, 2006).  Standardizing 

practices that result in greater accuracy and creating a more robust structure to be followed 

across brands could prove to be quite beneficial. 

An increased focus on leveraging best practices and developing more standardized 

processes should result in increased forecast accuracy, which in turn would lead to greater 
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pricing opportunity during future high demand periods, greater profitability from better 

matching demand and staffing, and greater hotel valuations as a result of increased 

profitability.  Even a relatively small but consistent increase in forecast accuracy would be 

beneficial to each hotel, each brand, and the industry as a whole. 

There is opportunity for a wide range of future study in this area.  A focus on 

developing a framework for the application of external demand information would be an area 

with immediate applicability for industry practitioners and should be pursued.  Studies of the 

correlation of external demand such as search engine volume and channel velocity on  

demand are underway now with several published.  This is a very promising area of 

improving future demand accuracy and should be continued. 
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CHAPTER 5.  GENERAL CONCLUSIONS 

General Discussion 

This dissertertation presented two studies related to forecasting occupancy in hotels.  

In comparison to other studies of hospitality and tourism forecasting, the forecasting of 

occupancy has not been fully explored.  The studies conducted as a part of this dissertation 

benefit the industry by highlighting the quantitiave findings on the accuracy of time-series 

forecasts of hotel occupancy and on the common sources of tacit information used by 

practicing revenue managers to adjust the time series forecasts to account for known changes 

in demand from historical patterns in future periods and the process by which this is done.  

Application of the findings and future research may ultimately help the hotel industry to 

improve forecasting accuracy for both pricing decisions and the management of variable 

costs. 

This two questions explored were: 

1.  Does one method of forecasting future occupancy outperform others? 

2. Are there common sources of contextual information about future demand in a 

market used to adjust the time series based forecast baseline and what is the 

process by which the forecasts are adjusted? 

Each of the two studies stands alone on an individual basis and contribute to the 

extant literature on forecasting in the hotel industry.  Overall, these two studies advance the 

body of knowledge in the hotel industry by discussing and applying quantitive methods of 

forecasting and further by exploring the sources of tacit market information used by revenue 

managers to apply their expert judgement to a forecast to improve forecast accuracy. 
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The first paper, entitled “Effective methods of forecasting occupied rooms,” 

presented a quantitative study that examined the accuracy of five different time series 

forecasting methods which have been demonstrated as the most accurate in prior academic 

studies of tourist arrivals and revenue per available room (RevPar).  The results of this study 

have produced empirical evidence of the relatively low accuracy of the various individual 

forecasting and combining methods used in prior studies of other tourism related time series 

data when applied to occupied rooms data.  This study was conducted to provide researchers 

and practitioners with initial empirical evidence of the results of the various forecasting 

methods that have resulted in the best accuracy in other tourism related studies. 

The second paper, entitled “The application of expert judgement to statistically based 

forecasts in the U.S. hotel industry,” revealed some important opportunities for industry 

consideration and further study.  Each of the brands represented continues to spend 

significant time and resources on improving their automated demand forecasting systems as 

the importance of demand forecasting is widely recognized.  Each of the brands also relies on 

the individual revenue and property managers to adjust these forecasts based upon their local 

market; however, this little training or consistency in how this process should occur.   

This presents an opportunity for forecast accuracy improvement across each of the 

major brands represented in the sample.  Much of the literature has demonstrated that Rule-

based forecasting results in more accurate forecasts, particularly when there is good domain 

knowledge and that knowledge has a significant impact (Armstrong, 2006). 

An increased focus on leveraging best practices and developing more standardized 

processes should result in increased forecast accuracy which in turn would lead to greater 

pricing opportunity during future high demand periods, greater profitability from better 
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matching demand and staffing, and greater hotel valuations as a result of increased 

profitability.  Even a relatively small but consistent increase in forecast accuracy would be 

beneficial to the industry. 

Recommendations for Future Research 

Given the highly competitive nature of the hotel industry in the United States and the 

transparency of publicly available room rates and the number of distribution channels 

available for the sale of rooms, the discipline of revenue management has become 

increasingly important.  Forecast accuracy is of critical importance, but for various reasons at 

various time horizons.  Forecasts of 30 to 550 days before arrival help establish appropriate 

rates based on future demand and the relative positioning of competitors’ rates.  Forecasts of 

between 3 and 30 days are important to the ability of operation managers to properly 

purchase and schedule to the variable demand. 

Given the unpredictability of demand, it is unlikely that one “best model” will 

emerge; however, this research does point to certain methods of time series forecasting being 

more accurate than others.  Further research into the effectiveness of time series models on 

different time horizons would be beneficial.  The data for competitive sets is easily available 

and generously shared, and so a quantitative focus is relatively straightforward. 

The technology supporting revenue management and forecasting systems has grown rapidly 

in sophistication, from very early Excel models developed independently by each property to 

the integrated systems today that use historical data and known future bookings to forecast, 

and rate shopping engines to continually monitor and update rates in response to changes 

competitors make.  It is likely that many of the functions that are manual in nature today will 

become increasingly automated in the future.  That said, there will always be a need for 
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revenue managers to utilize their tacit knowledge of future demand to modify these 

automated forecasts.  This study revealed that across several major brands and in a single 

unit, area, and centralized regional teams—each revenue manager approaches this process 

differently, but tend to use similar sources of external data. 

Future research may study the most practical application of best practices from other 

industries related to structured approaches to modifying forecasts.  To the extent application 

of expert judgement may be standardized and benchmarked it may result in increasing 

forecast accuracy.  It is also possible that as these processes are standardized, they may be 

further automated.  For example, the channel booking velocity data produced by the 

TravelClick Demand 360 products could be integrated into the forecasting systems, removing 

the need for human intervention in considering that particular series of data. 
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APPENDIX A: INFORMED CONSENT DOCUMENT 

Title of Study: Expert Judgement inputs for Hotel Occupancy Forecasting 
 
Investigator(s):   
Rex Warren,  Principal Investigator    
Mailing Address: 185 Providence Street, A430 

West Warwick, RI 02893 
Email Address: rex.warren@jwu.edu 
Telephone: 401-822-1793 
 
Tianshu Zheng, Ph.D Dissertation Committee Chair 
Mailing Address 9W MacKay 
 Ames, Iowa  50011 
Email Address: tianshu.zheng@iastate .edu 
 
This form describes a research project. It has information to help you decide whether or not 
you wish to participate. Research studies include only people who choose to take part—your 
participation is completely voluntary. Please discuss any questions you have about the study 
or about this form with the project staff before deciding to participate.   

 
Introduction 

The purpose of this study is to learn how revenue management experts in the hotel industry 
use their knowledge of future market demand to modify statistical forecasts that are based on 
historical demand to improve forecast accuracy. 
 
You are being invited to participate in this study because you are an expert in the field of 
hotel revenue management and are primarily responsible for or involved with the generation 
of occupancy forecasts for the hotel or hotel(s) you oversee.  

 
Description of Procedures 

If you agree to participate, you will be asked to participate in a semi-structured interview in 
which the Primary Investigator will ask you the following questions: 
Demographic: 

1. How long have you worked in the hotel industry? 
2. How long have you worked in the field of Revenue Management? 

3. How long have you been in your present position? 
Interview Questions 

1. What sources of market demand information do you use to adjust an occupancy 
forecast based on historical information? 

2. Which of these sources do you find most helpful in improving forecast accuracy, and 
why? 

3. How do you modify statistically based forecasts based on this information? 
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4. What market demand information would you like to have, but do not have that would 
be helpful in improving forecast accuracy? 

The interview should last for 30 minutes to 45 minutes.  The interview will take place at a 
time and location convenient to you either in person or via telephone. A digital audio 
recording of the interview will be made, and destroyed immediately upon transcription.  No 
personally identifiable information will be recorded nor associated with the interview notes. 

 
Risks or Discomforts 

While participating in this study you should experience no risk or discomfort. 
 

Benefits 
If you decide to participate in this study, there will be no direct benefit to you. It is hoped that 
the information gained in this study will benefit the industry by reporting commonly used 
information sources used by expert revenue management.  You will be provided a copy of 
the findings of the study upon completion. 

 
Costs and Compensation 

You will not have any costs from participating in this study. You will not be compensated for 
participating in this study.  

 
Participant Rights 

Participating in this study is completely voluntary. You may choose not to take part in the 
study or to stop participating at any time, for any reason, without penalty or negative 
consequences. You can skip any questions that you do not wish to answer. 
 
If you have any questions about the rights of research subjects or research-related injury, 
please contact the IRB Administrator, (515) 294-4566, IRB@iastate.edu, or Director, (515) 
294-3115, Office for Responsible Research, Iowa State University, Ames, Iowa 50011.  

 
Confidentiality 

Records identifying participants will be kept confidential to the extent permitted by 
applicable laws and regulations and will not be made publicly available. However, federal 
government regulatory agencies, auditing departments of Iowa State University, and the 
Institutional Review Board (a committee that reviews and approves human subject research 
studies) may inspect and/or copy study records for quality assurance and data analysis. These 
records may contain private information.  
 
To ensure confidentiality to the extent permitted by law, the following measures will be 
taken:  

1. Each interview participant will be asked to select a first name pseudonym from a list. 
Only the pseudonym will be used in all documented information, notes, and audio 
recordings.   

2. Only the interviewer will have access to information which links the coded 
participant to any personally identifiable information, and this key will be stored in a 
secure location separate from all other research documentation until transcription of 
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the audio file is completed.  At that point, both the identifying key and the audio file 
will be destroyed. 

 
Questions 

You are encouraged to ask questions at any time during this study. For further information 
about the study, contact Rex Warren, at Rex.warren@jwu.edu   

 
Consent and Authorization Provisions 

Your signature indicates that you voluntarily agree to participate in this study, that the study 
has been explained to you, that you have been given the time to read the document, and that 
your questions have been satisfactorily answered. You will receive a copy of the written 
informed consent prior to your participation in the study.  
 
 
Participant’s Name (printed)               
  
 
             
Participant’s Signature     Date  
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